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TasLE II. Parameters of fusion curves.

Ea.(15) Ea.(21) 7 Ear ) BaTOY) Eq. W0y £ (1)

Cs 3.5 2.3 e 1.0 1.1, 2.6 3.8
Rb 4.7 3.1 cee 1.4 14, 3.2 3.6
K 25 2.2 cee 0.9 0.9 23 3.5
Na (25) (2.7) 3.79® (.1.;) (1.0) (2.;) (3.;)

(50-60

kilobars)

2.86
(90-100
kilobars)

» Values at the origin of d?Tw/dPm? in Eq. (15) were computed from
second differences of Tm 95 Pm from Bridgman's data (reference 17). It
was necessary to smooth the values of A?T ' near the origin for K. For Na,
the values of A*T'w were too erratic to permit smoothing, and the value at
the origin was taken as the average of values corresponding to the first
four intervals of Pm.

b See reference 14. Parenthetic pressure ranges correspond to direct fit.

which enters B, must be obtained indirectly. Values of
the parameter u corresponding to the volume variation
of ¥»—7% are shown in Table II, as determined by Eq.
(15) from quantities evaluated at the origin; values of
&*T ,/dP,* were computed by numerical differentiation
of the fusion temperature with respect to pressure. As
noted, the value for Na is somewhat doubtful, as is
that for K to a less extent. These values of u and the
values of the fourth column of Table I for B yield the
tabulated values of 5 in the second column of Table II,
from Egs. (21). It is seen that the values of 5 are
reasonably concordant with the listed values obtained
by Murnaghan from direct fit, over ten-kilobar intervals
of pressure, of the pressure-volume curve for Na at
normal temperature.

A severer test of the assumptions underlying the
theory can be obtained by noting that the average value
¥ m, & Of the Griineisen parameter along the fusion curve,
defined by Eq. (23) in terms of 5, should be approxi-
mately equal to the average value defined implicitly by
Eq. (18) for the variation of v,,— % with fusion tempera-
ture. The latter average is given by

’Ym.Av—%z 1—- (Tm. O/Tm.mux A1 : (39)
Y m, 0_% (ﬁ_l)(Tm.mu/T'n.O" 1)

where T, max is the maximum temperature on an
observed fusion curve. It is seen that agreement is
reasonable for tabulated values of yma in Table II,
as obtained by means of Eq. (23) from the values of
7 in the second column, and as obtained by means of
Eq. (39) from the values of x4 and 7 in the first and
second columns, respectively. One should not expect
identity necessarily, since the two evaluations of
Yma correspond to different methods of averaging.
Finally, one notes that dy./dT,. is negative, from
Eq. (18); the sign of the derivative agrees with the
relation v a<7¥mo Wwhich holds for the values of
¥ m,a in Table IT except for one instance in the doubtful
case of Na.

The approximate equality of these two evaluations
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of ¥m, a yields a method of inferring the value of 7 from
knowledge of the values of 7ym,¢ and u. If Eq. (39) is
rewritten, by means of Egs. (23) and (24), as

1"’ (Tm, O/Tm. mux)B—1
- ) (40)
(B_ 1) (Tm. mnx/Tm, o= 1)

the definition 8=u/(n—1) permits one to solve the
equation for by trial, if 7o and u are known. Values of
n obtained in this manner, with use of values of v, ¢ and
u from Tables I and II, respectively, are shown in the
sixth column of Table IT; the agreement with the values
of the second column is satisfactory. Values of B from
Eq. (21) corresponding to values of u and 7 from the
first and sixth columns, respectively, are tabulated in
the last column of Table II; the agreement with the
values of the fourth column of Table I is good for Rb
and K, but the differences in the cases of Cs and Na
reflect the sensitivity of B= (y+u)/(n—1) to the value
of »—1 in the denominator. Thus, the theory given is
able to predict an approximate value of the Simon
exponent for the alkali metals; by way of contrast
with the values of the last column of Table II, note that
Salter’s evaluation (27) of the Simon exponent yields
numbers of the order of 1.5.

By use of a Taylor expansion of Eq. (18) to obtain
an evaluation of v a, one finds the explicit expression

1~ 3 {not 14 (0= 1)* = 4 (Tm, max/ T'm,0— 1) J#},  (41)

valid as an approximation provided T, max/Tm, o0 is
sufficiently small. This equation yields values of 7
differing from those corresponding to Eq. (40) by about
6% on the average for Cs, Rb, and Na; it fails for
K, where the large value of T, max/Tmo—1 (in this
case about }) makes the radical imaginary.

On the assumption that the heat capacity of the
solid at fusion has the Dulong and Petit value, Egs.
(36) and (34) of I yield the approximation

in which @ is the parameter appearing in Eq. (7). Use
of Eq. (18) in this expression for ¢ with values of u
and 5 from Table II, permits one to evaluate the
minimum value ¢mina 0of ¢ corresponding to the tempera-
ture Tm max ON a fusion curve. The relative difference
(g0—qwmin)/qo is largest for the elements K and Cs
showing the largest ordinates in Fig. 2, in which
cases it amounts to about 10%,. Since this value
probably exceeds the experimental error in the fusion
data, Eqgs. (20) and (31) are valid only as first-order
approximations; a more refined analysis should take
the variation of ¢ into account.

n—1

n0—1

IV. CONCLUSION

The successful comparison of theory with experiment
for the alkali metals permits one to assess tentatively
the significance of the Simon equation for elements of
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